Hệ phương trình là dạng kiến thức rất quan trọng trong chương trình toán học phổ thông và thường xuất hiện trong các bài kiểm tra và bài thi. Sau đây là lý thuyết về Cách giải và biện luận hệ phương trình bậc nhất lớp 9 và bài tập có đáp án liên quan, mời các bạn cùng theo dõi!
Mục lục bài viết
1. Cách giải và biện luận hệ phương trình bậc nhất hai ẩn:
Hệ phương trình bậc nhất hai ẩn có dạng tổng quát là
Trong đó x, y là hai ẩn; các chữ số còn lại là hệ số.
Nếu cặp số (x0; y0) đồng thời là nghiệm của cả hai phương trình của hệ thì (x0; y0) được gọi là một nghiệm của hệ phương trình (1).
Giải hệ phương trình (1) là tìm tập nghiệm của nó
Công thức nghiệm: Quy tắc Crame.
Xét D | Kết quả | |
D ≠ 0 | Hệ có nghiệm duy nhất x = Dx/D , y = Dy/D | |
D = 0 | Dx ≠ 0 hoặc Dy ≠ 0 | Hệ vô nghiệm. |
Dx = Dy = 0 | Hệ có vô số nghiệm. |
Để giải hệ phương trình bậc nhất hai ẩn ta có thể dùng các cách giải đã biết như: phương pháp thế, phương pháp cộng đại số.
Biểu diễn hình học của tập nghiệm:
Nghiệm (x; y) của hệ (I) là tọa độ điểm M(x; y) thuộc cả 2 đường thẳng:
(d1): a1x + b11y = c1 và (d2): a2x + b2y = c2
+ Hệ (I) có nghiệm duy nhất ⇔(d1) và (d2) cắt nhau.
+ Hệ (I) vô nghiệm ⇔ (d1) và (d2) song song với nhau.
+ Hệ (I) có vô số nghiệm ⇔ (d1) và (d2) trùng nhau.
- Phương trình bậc nhất hai ẩn x, y có dạng tổng quát là
ax + by = c (1)
trong đó a, b, c là các hệ số, với điều kiện a và b không đồng thời bằng 0.
CHÚ Ý
a. Khi a = b = 0 ta có phương trình 0x + 0y = c. Nếu c ≠ 0 thì phương trình này vô nghiệm, còn nếu c = 0 thì mọi cặp số (x0; y0) đều là nghiệm.
b. Khi b ≠ 0, phương trình ax + by = c trở thành
y = (-a/b)x + c/b (2)
Cặp số (x0; y0) là một nghiệm của phương trình (1) khi và chỉ khi điểm M(x0; y0) thuộc đường thẳng (2).
Tổng quát, người ta chứng minh được rằng phương trình bậc nhất hai ẩn luôn luôn có vô số nghiệm. Biểu diễn hình học tập nghiệm của phương trình của phương trình (1) là một đường thẳng trong mặt phẳng tọa độ Oxy.
2. Cách giải và biện luận hệ phương trình bậc nhất ba ẩn:
Phương trình bậc nhất ba ẩn có dạng tổng quát là
ax + by + cz = d
trong đó x, y, z là ba ẩn; a, b, c, d là các hệ số và a, b, c không đồng thời bằng 0
Hệ phương trình bậc nhất ba ẩn có dạng tổng quát là
Trong đó x, y, z là ba ẩn; các chữ còn lại là các hệ số.
Mỗi bộ ba số (x0, y0, z0) nghiệm đúng của ba phương trình của hệ được gọi là một nghiệm của hệ phương trình (2).
Phương pháp giải
Nguyên tắc chung để giải các hệ phương trình nhiều ẩn là khử bớt ẩn để đưa về các phương trình hay hệ phương trình có số ẩn ít hơn. Để khử bớt ẩn, ta cũng có thể dùng các phương pháp cộng đại số, phương pháp thế như đối với hệ phương trình bậc nhất hai ẩn.
3. Bài tập vận dụng:
Câu 1: Hệ phương trình có nghiệm duy nhất khi
Lời giải:
Chọn đáp án A
Câu 2: Hệ hai phương trình bậc nhất hai ẩn (các hệ số khác ) vô nghiệm khi
Lời giải:
Chọn đáp án B
Câu 3: Hệ hai phương trình nhận cặp số nào sau đây là nghiệm
A. (-21; 15)
B. (21; -15)
C. (1; 1)
D. (1; -1)
Lời giải:
Thay lần lượt các cặp số (21; -15); (1; 1); (1; -1); (-21; 15) vào hệ phương trình ta được
Chọn đáp án A
Câu 4: Cặp số (-2; -3) là nghiệm của hệ phương trình nào sau đây ?
Lời giải:
Chọn đáp án C
Câu 5: Không giải hệ phương trình, dự đoán số nghiệm của hệ
A. 0
B. Vô số
C. 1
D. 2
Lời giải:
Tập nghiệm phương trình -2x + y = -3 được biểu diễn bởi đường thẳng -2x + y = -3
Tập nghiệm phương trình 3x – 2y = 7 được biểu diễn bởi đường thẳng 3x – 2y = 7
Phương trình có một nghiệm duy nhất
Chọn đáp án C
Câu 6: Không cần vẽ hình, cho biết mỗi hệ phương trình sau có bao nhiêu nghiệm?
A. 1
B. Vô số
C. 0
D. 2
Lời giải:
+ Tập nghiệm của phương trình y = 2x + 10 được biểu diễn bởi đường thẳng d1:y = 2x + 10.
+ Tập nghiệm của phương trình y = x + 100 được biểu diễn bởi đường thẳng d2: y = x + 100.
Lại có: hệ số góc của hai đường thẳng d1; d2 khác nhau (2 ≠ 1) nên hai đường thẳng này cắt nhau.
Suy ra, hệ phương trình đã cho có nghiệm duy nhất.
Chọn đáp án A.
Câu 7: Không vẽ hình, hãy cho biết hệ phương trình sau có bao nhiêu nghiệm?
A. 1
B. Vô số
C. 0
D. 2
Lời giải:
Ta có:
Nên tập nghiệm của phương trình x – 2y + 10 = 0 được biểu diễn bởi đường thẳng (d1):
Nên tập nghiệm của phương trình -3x +6y – 30= 0 được biểu diễn bởi đường thẳng (d2):
Do đó, nên hệ phương trình đã cho có vô số nghiệm.
Chọn đáp án B.
Câu 8: Không vẽ hình, hỏi hệ phương trình sau có bao nhiêu nghiệm:
A. Vô số nghiệm
B. 0
C.1
D. 2
Lời giải:
Tập nghiệm của phương trình – 2x + 5y = 10 được biểu diễn bởi đường thẳng (d1):
Nên tập nghiệm của phương trình 16x – 40y = 20 được biểu diễn bởi đường thẳng (d2):
Hai đường thẳng d1; d2 có cùng hệ số góc và có tung độ góc khác nhau nên d1// d2.
Suy ra, hệ phương trình đã cho vô nghiệm.
Chọn đáp án B.
Câu 9: Cho hệ phương trình . Tìm m để hệ phương trình đã cho vô nghiệm
A. m = 3
B. m = 1
C. m = -2
D. m = -1
Lời giải:
Nghiệm phương trình y = 2x + 20 được biểu diễn bởi đường thẳng (d1): y =2x +20.
Nghiệm phương trình y = (2m – 4)x + 10 được biểu diễn bởi đường thẳng (d2): y = (2m – 4)x + 10.
Để hệ phương trình đã cho vô nghiệm khi 2 đường thẳng d1 // d2
Chọn đáp án A.
Câu 10: Cho hệ phương trình . Tìm m để hệ phương trình trên có nghiệm duy nhất?
A. m = 3
B. m = -3
C. m ≠ -3
D. m ≠ 3
Lời giải:
Nghiệm phương trình y = (-2 – m)x + 2 được biểu diễn bởi đường thẳng (d1): y =(-2 – m)x + 2
Nghiệm phương trình y = (m + 4)x + 19 được biểu diễn bởi đường thẳng (d2): y = (m +4)x +19
Để hệ phương trình đã cho có nghiệm duy nhất khi và chỉ khi hai đường thẳng cắt nhau nên:
-2 – m ≠ m + 4 ⇔ -2m ≠ 6 ⇔ m ≠ -3
Chọn đáp án D.
Câu 11: Xác định giá trị của tham số m để hệ phương trình có nghiệm duy nhất
A. m ≠ 2
B. m ≠ −2
C. m = 2
D. m ≠ ± 2
Lời giải:
Để hệ phương trình có nghiệm duy nhất thì
m khác +/- 2
Đáp án cần chọn là: D
Câu 12: Xác định giá trị của tham số m để hệ phương trình có nghiệm duy nhất.
A. m ≠ 0
B. m ≠ 2
C. m ≠ {0;3}
D. m = 0; m = 3
Lời giải:
Nhận thấy hệ này có nghiệm duy nhất vì hai đường thẳng cắt nhau
Để hệ phương trình đã cho có nghiệm duy nhất thì hai đường thẳng:
cắt nhau
Suy ra m ≠ {0; 2; 3}
Kết hợp cả TH1 và TH2 ta có m ≠ {0; 3}
Vậy hệ phương trình đã cho có nghiệm duy nhất khi m ≠ {0; 3}
Đáp án cần chọn là: C
Câu 13: Hệ phương trình nhận cặp số nào sau đây là nghiệm?
A. (−21; 15)
B. (21; −15)
C. (1; 1)
D. (1; −1)
Lời giải:
Thay lần lượt các cặp số (−21; 15); (21; −15); (1; 1) và (1; −1) vào hệ phương trình ta được:
+) Với cặp số (−21; 15) thì ta có (luôn đúng) nên chọn A
Đáp án cần chọn là: A
Câu 14: Hệ phương trình nhận cặp số nào sau đây là nghiệm?
A. (1; 2)
B. (8; −3)
C. (3; −8)
D. (3; 8)
Lời giải:
+) Với cặp số (3; −8) thì ta có (luôn đúng) nên chọn C
Đáp án cần chọn là: C
Câu 15: Cho hệ phương trình . Tìm các giá trị của tham số m để hệ phương trình nhận cặp (1; 2) làm nghiệm
A. m = 0
B. m = −1
C. m = −2
D. m = 3
Lời giải:
Để hệ phương trình nhận cặp (1; 2) làm nghiệm thì
m = -2
Vậy m = −2
Đáp án cần chọn là: C
THAM KHẢO THÊM: