Skip to content
 1900.6568

Trụ sở chính: Số 89, phố Tô Vĩnh Diện, phường Khương Trung, quận Thanh Xuân, thành phố Hà Nội

  • DMCA.com Protection Status
Home

  • Trang chủ
  • Lãnh đạo công ty
  • Đội ngũ Luật sư
  • Chi nhánh ba miền
    • Trụ sở chính tại Hà Nội
    • Chi nhánh tại Đà Nẵng
    • Chi nhánh tại TPHCM
  • Pháp luật
  • Dịch vụ Luật sư
  • Văn bản
  • Biểu mẫu
  • Danh bạ
  • Giáo dục
  • Bạn cần biết
  • Liên hệ
    • Luật sư gọi lại tư vấn
    • Chat Zalo
    • Chat Facebook

Home

Đóng thanh tìm kiếm

  • Trang chủ
  • Đặt câu hỏi
  • Đặt lịch hẹn
  • Gửi báo giá
  • 1900.6568
Trang chủ Giáo dục

Cát tuyến là gì? Tính chất, xác định cát tuyến đường tròn?

  • 02/06/202502/06/2025
  • bởi Cao Thị Thanh Thảo
  • Cao Thị Thanh Thảo
    02/06/2025
    Theo dõi chúng tôi trên Google News

    Trong hình học, cát tuyến là một khái niệm quan trọng và thường xuất hiện trong các bài toán về đường tròn. Vậy cát tuyến là gì? Cát tuyến của đường tròn có tính chất và được xác định như thế nào? Bài viết dưới đây cũng giới thiệu một số bài toán liên quan đến cát tuyến của đường tròn.

      Mục lục bài viết

      • 1 1. Khái niệm và ứng dụng của cát tuyến:
        • 1.1 1.1. Khái niệm của cát tuyến:
        • 1.2 1.2. Ứng dụng đường cát tuyến hình tròn:
      • 2 2. Đặc điểm, tính chất đường cát tuyến:
      • 3 3. Cách xác định cát tuyến đường tròn:
      • 4 4. Bài tập về cát tuyến:

      1. Khái niệm và ứng dụng của cát tuyến:

      1.1. Khái niệm của cát tuyến:

      Cát tuyến là một từ Hán Việt với “cát” có nghĩa là cắt, “tuyến” là đường thẳng, cát tuyến là đường thẳng cắt ngang qua một bề mặt khác như đường cong, đường tròn,… Định nghĩa cát tuyến của đường tròn được nêu trong sách giáo khoa hình học lớp 9 như sau: 

      Cát tuyến của đường tròn chính là đường thẳng cắt đường tròn đó tại 2 điểm phân biệt. Tức là giao điểm giữa đường cát tuyến và đường tròn là hai điểm thuộc đường tròn đó. Trường hợp đặc biệt của cát tuyến chính là đường thẳng đi qua tâm của đường tròn. Khi ấy cát tuyến của đường tròn sẽ trùng với đường kính đường tròn đó.

      Một số ví dụ về đường cát tuyến:

      Vd1: Cát tuyến của hai đường thẳng là một đường thẳng cắt hai đường thẳng đó.

      Vd2: Cát tuyến của đường tròn cắt đường tròn tại hai điểm bất kì thuộc đường tròn đó.

      Vd3: cát tuyến của một cung tròn cắt cung tròn tại hai điểm phân biệt.

      1.2. Ứng dụng đường cát tuyến hình tròn:

      Đường cát tuyến hình tròn có thể được sử dụng để giải các bài toán liên quan đến tỉ lệ, tam giác đồng dạng, đường tròn nội tiếp và ngoại tiếp. Một số ví dụ về ứng dụng đường cát tuyến hình tròn là:

      • Tính chiều cao của một ngọn núi khi biết góc nhìn từ hai điểm cách nhau một khoảng xác định.
      • Tính bán kính của một đường tròn khi biết hai cát tuyến của nó và khoảng cách giữa hai điểm giao của chúng với đường tròn.
      • Tính diện tích của một tứ giác nội tiếp trong một đường tròn khi biết các cạnh của nó và các góc tạo bởi các cát tuyến của chúng.
      • Tính chiều dài của một cung tròn khi biết hai tiếp tuyến và một cát tuyến của nó

      2. Đặc điểm, tính chất đường cát tuyến:

      Đường cát tuyến là đường thẳng cắt một đường khác (đường thẳng, đường tròn, đường cong,…) tại hai điểm phân biệt. Đường cát tuyến có một số tính chất sau:

      • Nếu hai đường thẳng chứa các dây của một đường tròn cắt nhau tại một điểm thì tích các đoạn của mỗi dây bằng nhau.
      • Nếu hai đường thẳng cắt nhau tại một điểm và tích các đoạn của mỗi đường bằng nhau thì bốn điểm thuộc cùng một đường tròn.
      • Nếu một đường thẳng là tiếp tuyến và một đường thẳng là cát tuyến của một đường tròn thì bình phương của tiếp tuyến bằng tích hai đoạn của cát tuyến.
      • Nếu từ một điểm ngoài đường tròn kẻ hai tiếp tuyến và một cát tuyến thì trung điểm của cát tuyến thuộc trung trực của hai tiếp điểm.
      • Nếu từ một điểm ngoài đường tròn kẻ hai tiếp tuyến và một cát tuyến thì tỉ số các đoạn của cát tuyến bằng tỉ số các tiếp tuyến

      3. Cách xác định cát tuyến đường tròn:

      Cách vẽ đường cát tuyến của đường tròn và đường cong là yêu cầu cơ bản trong bài toán liên quan đến đường cát tuyến. Sau đây chúng tôi sẽ hướng dẫn bạn cách vẽ cát tuyến chỉ với 2 bước đơn giản là:

      • Bước 1: Xác định hai điểm bất kì thuộc đường tròn hoặc cung tròn. Lưu ý đối với đường tròn, nếu không có yêu cầu đặc biệt thì bạn không nên chọn hai điểm nằm trên đường kính của đường tròn đó.
      • Bước 2: Vẽ một đường thẳng bằng cách nối hai điểm vừa xác định. Đường thẳng này chính là đường cát tuyến, nó cắt và chia đường tròn thành hai cung.

      Ngoài ra, bạn cũng có thể dùng các tính chất của cát tuyến để xác định cát tuyến của đường tròn. Một số tính chất quan trọng là: Nếu hai đường thẳng chứa các dây của một đường tròn cắt nhau tại một điểm thì tích các đoạn của mỗi dây bằng nhau. Nếu một đường thẳng là tiếp tuyến và một đường thẳng là cát tuyến của một đường tròn thì bình phương của tiếp tuyến bằng tích hai đoạn của cát tuyến. Nếu từ một điểm ngoài đường tròn kẻ hai tiếp tuyến và một cát tuyến thì tỉ số các đoạn của cát tuyến bằng tỷ số các tiếp tuyến.

      4. Bài tập về cát tuyến:

      Ví dụ 1: Từ 1 điểm M nằm ngoài đường tròn (O) bạn hãy vẽ 1 đường cát tuyến MCD không đi qua tâm đường tròn O và có hai tiếp tuyến lần lượt là MA và MB đến đường tròn (O). Ở đây A, B chính là các tiếp điểm và điểm C sẽ nằm giữa M, D.

      1. Chứng minh bất đẳng thức sau : MA.MA = MC.MD

      2. Gọi I chính là trung điểm của đoạn thẳng CD. Hãy chứng minh rằng 4 điểm M, A, O, I, B cùng nằm trên 1 đường tròn.

      3. Gọi H là giao điểm của hai đường thẳng HB và MO. Hãy chứng minh rằng tứ giác CHOD là tứ giác nội tiếp với đường tròn (O) và HB là đường phân giác của góc CHD.

      4. Gọi K là giao điểm của các tiếp tuyến lần lượt tại hai điểm C và D của đường tròn (O). Hãy chứng minh rằng 3 điểm A, B, K sẽ cùng nằm trên một đường thẳng.

      Gợi ý đáp án:

      Vì MA chính là tiếp tuyến của đường tròn (O) nên ta có:

      Góc MAC bằng Góc MDA suy ra ΔMAC ~ ΔMDA (g.g)

      => MA/MD sẽ bằng MC/MA suy ra MA.MA bằng MC.MD

      Vì I là trung điểm của CD nên suy ra

      Góc MIO = 90 độ và bằng với góc MAO và góc MBO. Từ những điểm trên ta có thể kết luận được M, A, O, I, B sẽ cùng thuộc trên 1 đường tròn.

      Vì ta có đoạn MA vuông góc với đoạn OA, đoạn OM vuông góc với đoạn OB tại điểm H. Suy ra MH.MO bằng MA.MA bằng MC.MD

      => MA/MD bằng MC/MA -> ΔMHC ~ ΔMDC -> Góc MHC bằng với góc MDO.

      => Tứ giác HDCO là tứ giác nội tiếp của đường tròn tâm O.

      => Góc OHD bằng góc OCD bằng góc ODC bằng góc MHC

      Ta có 90 độ – góc MHC = 90 độ – góc OHD sau ra góc CHB bằng với góc BHD

      Từ đó ta có thể kết luận rằng: đoạn HB chính là phân giác của góc CHD.

      Ta có HB là phân giác của góc CHD

      Vì KC, KD lần lượt là hai đường tiếp tuyến của đường tròn (O) suy ra KCOD là tứ giác nội tiếp đường tròn (O) mà HOCD lại là tứ giác nội tiếp (chứng minh trên). Như vậy suy ra 4 điểm K, C, H, O, D phải cùng nằm trên 1 đường tròn. 

      Mà lại có HK là phân giác của góc CHD do KC sẽ bằng KD

      => 3 điểm A, B, K phải thẳng hàng.

      Ví dụ 2: Cho 2 đường thẳng song song a, b và một đường cát tuyến c. Hai tia phân giác của cặp góc trong cùng phía cắt nhau tại điểm I. Chứng minh điểm I cách đều 3 đường thẳng a, b và c.

      Gợi ý đáp án:

      Gọi 3 điểm A, B, C lần lượt là chân đường vuông góc kẻ từ điểm I đến a, b, c. 

      Xét hai góc trong cùng phía CEA và CFB ta có:

      Do I nằm trên tia phân giác của góc CEA nên IA = IC (1)

      Do I nằm trên tia phân giác của góc CFB nên IC = IB (2)

      Từ (1) và (2) => IA = IB = IC

      => I cách đều đường thẳng a, b và c.

      Ví dụ 3: Từ điểm K nằm bên ngoài đường tròn tâm O, hãy kẻ các tiếp tuyến KA, KB và kẻ thêm đường cát tuyến KCD đến đường tròn. Lấy M là giao điểm AB và OK. Vẽ đoạn DI đi qua M. Chứng minh:

      a) KIOD là tứ giác nội tiếp.

      b) KO là đường phân giác góc IKD.

      Gợi ý đáp án:

      a)

      Ta có tứ giác AIBD nội tiếp đường tròn (O) và AB ⋂ ID = M

      => MA.MB = MI.MD (1)

      Mặt khác ta có góc KAO = góc KBO = 900 => OBKA là tứ giác nội tiếp 

      => MA.MB = MO.MK (2)

      Từ (1) và (2) => MI.MD = MO.MK

      => KIOD là một tứ giác nội tiếp

      b)

      Vì KIOD là tứ giác nội tiếp

      Nên góc DKO = góc DIO

      góc OKI = góc ODI

      Mà ΔDOI cân tại O nên góc DIO = góc DOI

      => góc DKO = góc OKI

      Do đó KO là phân giác góc IKD

       
       
       
       
       
       
       
       
       
       
       

      Duong Gia Facebook Duong Gia Tiktok Duong Gia Youtube Duong Gia Google

        Liên hệ với luật sư để được hỗ trợ

      •   Tư vấn pháp luật qua Email
         Tư vấn nhanh với Luật sư
      -
      CÙNG CHUYÊN MỤC
      • NATO là gì? Tổ chức Hiệp ước Bắc Đại Tây Dương (NATO)
      • Phân tích văn bản Viên tướng trẻ và con ngựa trắng
      • Bàn tay mở rộng trao ban tâm hồn mới tràn ngập vui sướng
      • Viết một sáng kiến kinh nghiệm nhằm thúc đẩy việc đọc sách
      • Các dạng bài tập cân bằng phương trình oxi hóa khử hay gặp
      • Thuyết minh Vườn quốc gia Cát Tiên (Đồng Nai) hay nhất
      • Phân tích và cảm nhận về chân dung Đô-xtôi-ép-ki hay nhất
      • Cây công nghiệp lâu năm được phát triển ở Đồng bằng sông Cửu Long là?
      • Xuất hay suất? Sơ xuất hay sơ suất? Xuất quà hay suất quà?
      • Viết 4 – 5 câu về tình cảm của em với một người thân
      • Thiên Địa Hội là gì? Nghĩa Hoà Đoàn là gì? Có vai trò gì?
      • Trình bày ý kiến về: Những lưu ý khi sử dụng ChatGPT
      BÀI VIẾT MỚI NHẤT
      • Dịch vụ xin cấp giấy phép lao động cho người nước ngoài
      • Dịch vụ xin cấp thẻ tạm trú cho người nước ngoài trọn gói
      • NATO là gì? Tổ chức Hiệp ước Bắc Đại Tây Dương (NATO)
      • Sáng kiến kinh nghiệm phát triển văn hóa đọc cho cộng đồng
      • Khóc nhiều sẽ bị gì? Khóc nhiều quá thì có bị mù không?
      • Dịch vụ đại diện xử lý xâm phạm quyền sở hữu trí tuệ
      • Dịch vụ gia hạn hiệu lực văn bằng bảo hộ sở hữu trí tuệ
      • Dịch vụ đăng ký bảo hộ nhãn hiệu quốc tế uy tín trọn gói
      • Dịch vụ đăng ký thương hiệu, bảo hộ logo thương hiệu
      • Dịch vụ đăng ký nhãn hiệu, bảo hộ nhãn hiệu độc quyền
      • Luật sư bào chữa các tội liên quan đến hoạt động mại dâm
      • Luật sư bào chữa tội che giấu, không tố giác tội phạm
      LIÊN KẾT NỘI BỘ
      • Tư vấn pháp luật
      • Tư vấn luật tại TPHCM
      • Tư vấn luật tại Hà Nội
      • Tư vấn luật tại Đà Nẵng
      • Tư vấn pháp luật qua Email
      • Tư vấn pháp luật qua Zalo
      • Tư vấn luật qua Facebook
      • Tư vấn luật ly hôn
      • Tư vấn luật giao thông
      • Tư vấn luật hành chính
      • Tư vấn pháp luật hình sự
      • Tư vấn luật nghĩa vụ quân sự
      • Tư vấn pháp luật thuế
      • Tư vấn pháp luật đấu thầu
      • Tư vấn luật hôn nhân gia đình
      • Tư vấn pháp luật lao động
      • Tư vấn pháp luật dân sự
      • Tư vấn pháp luật đất đai
      • Tư vấn luật doanh nghiệp
      • Tư vấn pháp luật thừa kế
      • Tư vấn pháp luật xây dựng
      • Tư vấn luật bảo hiểm y tế
      • Tư vấn pháp luật đầu tư
      • Tư vấn luật bảo hiểm xã hội
      • Tư vấn luật sở hữu trí tuệ
      LIÊN KẾT NỘI BỘ
      • Tư vấn pháp luật
      • Tư vấn luật tại TPHCM
      • Tư vấn luật tại Hà Nội
      • Tư vấn luật tại Đà Nẵng
      • Tư vấn pháp luật qua Email
      • Tư vấn pháp luật qua Zalo
      • Tư vấn luật qua Facebook
      • Tư vấn luật ly hôn
      • Tư vấn luật giao thông
      • Tư vấn luật hành chính
      • Tư vấn pháp luật hình sự
      • Tư vấn luật nghĩa vụ quân sự
      • Tư vấn pháp luật thuế
      • Tư vấn pháp luật đấu thầu
      • Tư vấn luật hôn nhân gia đình
      • Tư vấn pháp luật lao động
      • Tư vấn pháp luật dân sự
      • Tư vấn pháp luật đất đai
      • Tư vấn luật doanh nghiệp
      • Tư vấn pháp luật thừa kế
      • Tư vấn pháp luật xây dựng
      • Tư vấn luật bảo hiểm y tế
      • Tư vấn pháp luật đầu tư
      • Tư vấn luật bảo hiểm xã hội
      • Tư vấn luật sở hữu trí tuệ
      Dịch vụ luật sư uy tín toàn quốc


      Tìm kiếm

      Duong Gia Logo

      •   Tư vấn pháp luật qua Email
         Tư vấn nhanh với Luật sư

      VĂN PHÒNG HÀ NỘI:

      Địa chỉ: 89 Tô Vĩnh Diện, phường Khương Trung, quận Thanh Xuân, thành phố Hà Nội, Việt Nam

       Điện thoại: 1900.6568

       Email: dichvu@luatduonggia.vn

      VĂN PHÒNG MIỀN TRUNG:

      Địa chỉ: 141 Diệp Minh Châu, phường Hoà Xuân, quận Cẩm Lệ, thành phố Đà Nẵng, Việt Nam

       Điện thoại: 1900.6568

       Email: danang@luatduonggia.vn

      VĂN PHÒNG MIỀN NAM:

      Địa chỉ: 227 Nguyễn Thái Bình, phường 4, quận Tân Bình, thành phố Hồ Chí Minh, Việt Nam

       Điện thoại: 1900.6568

        Email: luatsu@luatduonggia.vn

      Bản quyền thuộc về Luật Dương Gia | Nghiêm cấm tái bản khi chưa được sự đồng ý bằng văn bản!

      Chính sách quyền riêng tư của Luật Dương Gia

      • Chatzalo Chat Zalo
      • Chat Facebook Chat Facebook
      • Chỉ đường picachu Chỉ đường
      • location Đặt câu hỏi
      • gọi ngay
        1900.6568
      • Chat Zalo
      Chỉ đường
      Trụ sở chính tại Hà NộiTrụ sở chính tại Hà Nội
      Văn phòng tại Đà NẵngVăn phòng tại Đà Nẵng
      Văn phòng tại TPHCMVăn phòng tại TPHCM
      Gọi luật sư Gọi luật sư Yêu cầu dịch vụ Yêu cầu dịch vụ
      • Gọi ngay
      • Chỉ đường

        • HÀ NỘI
        • ĐÀ NẴNG
        • TP.HCM
      • Đặt câu hỏi
      • Trang chủ
      ID: 34230