Skip to content
1900.6568

Trụ sở chính: Số 89, phố Tô Vĩnh Diện, phường Khương Trung, quận Thanh Xuân, thành phố Hà Nội

  • DMCA.com Protection Status
Home

  • Trang chủ
  • Giới thiệu
    • Về Luật Dương Gia
    • Luật sư điều hành
    • Tác giả trên Website
    • Thông tin tuyển dụng
  • Tư vấn pháp luật
  • Tổng đài Luật sư
  • Dịch vụ Luật sư
  • Biểu mẫu
    • Biểu mẫu Luật
    • Biểu mẫu khác
  • Văn bản pháp luật
  • Kinh tế tài chính
  • Giáo dục
  • Bạn cần biết
    • Từ điển pháp luật
    • Thông tin địa chỉ
    • Triết học Mác-Lênin
    • Hoạt động Đảng Đoàn
    • Tư tưởng Hồ Chí Minh
    • Tư vấn tâm lý
    • Các thông tin khác
  • Liên hệ
Home

Đóng thanh tìm kiếm
  • Trang chủ
  • Đặt câu hỏi
  • Đặt lịch hẹn
  • Gửi báo giá
  • 1900.6568
Trang chủ » Bạn cần biết » Giáo dục » Cấp số cộng là gì? Công sai là gì? Công thức tính cấp số cộng?

Giáo dục

Cấp số cộng là gì? Công sai là gì? Công thức tính cấp số cộng?

  • 16/01/2023
  • bởi Cao Thị Thanh Thảo
  • Cao Thị Thanh Thảo
    16/01/2023
    Giáo dục
    0

    Cấp số cộng là một dãy số có tính chất đặc biệt. Và thường xuyên xuất hiện trong các bài toán. Dưới đây sẽ cung cấp các thông tin cần thiết cho các bạn về cấp số cộng, tính chất và công thức thường có.

    Mục lục bài viết

    • 1 1. Khái niệm cấp số cộng? Công sai là gì? Ví dụ?
    • 2 2. Tính chất cấp số cộng?
    • 3 3. Tính công sai cấp số cộng?
    • 4 4. Số hạng tổng quát của cấp số cộng:
    • 5 5. Một số công thức khác:
      • 5.1 5.1. Công thức liên hệ giữa hai số hạng bất kỳ
      • 5.2 5.2. Công thức tính tổng n số hạng đầu (tổng riêng thứ n) thông qua số hạng đầu và số hạng thứ n
    • 6 6. Một số dạng bài tập tính cấp số cộng:
      • 6.1 6.1. Dạng 1: Nhận biết cấp số cộng
      • 6.2 6.2. Dạng 2: Tìm công sai từ công thức cấp số cộng:
      • 6.3 6.3. Dạng 3: Tìm số hạng của cấp số cộng:
      • 6.4 6.4. Dạng 4: Tính tổng cấp số cộng của n số hạng đầu tiên:
      • 6.5 6.5. Dạng 5: Tìm cấp số cộng:
    • 7 7. Một số bài tập ví dụ:

    1. Khái niệm cấp số cộng? Công sai là gì? Ví dụ?

    Cấp số cộng là 1 dãy số (hữu hạn hoặc vô hạn) các số hạng thỏa mãn điều kiện kể từ số hạng thứ 2 trở đi bằng số hạng đứng trước nó cộng với 1 số không đổi.

    Số hạng không đổi đó được gọi là Công sai.

    Công thức:

    Un = Un-1 + d (n>=2)

    Ví dụ:

    – Dãy hằng với các số hạng không đổi là cấp số số cộng với công sai bằng O.

    – Dãi các số tự nhiên 2; 4; 6; 8; 10;… là cấp số cộng với công sai bằng 2.

    2. Tính chất cấp số cộng?

    Nếu là cấp số cộng thì kể từ số hạng thứ 2, mỗi số hạng (trừ số hạng cuối đối với cấp số cộng hữu hạn) đều là trung bình cộng của hai số hạng đứng kế bên nó trong dãy số.

    Công thức:

    Un = (Un-1 + Un+1) : 2

    Ví dụ:

    Ta có 3 số hạng liên tiếp của một cấp số cộng là: 10; 12; 14

    Thì (10+14):2 = 1

    3. Tính công sai cấp số cộng?

    Số d được gọi là công sai của cấp số cộng. Thì công thức tính công sai bằng:

    Công thức:

    d=Un+1 – Un

    Ví dụ:

    Ta có dãy số  1, 5, 9, 13, 17, 21, 25 là một cấp số cộng với công sai d = 4

    vì: 25-21=4; 21-17=4;…

    4. Số hạng tổng quát của cấp số cộng:

    Nếu cấp số cộng khởi đầu là phần tử  và công sai là d, thì số hạng thứ n của cấp số cộng được tính theo công thức cấp số cộng sau:

    Un=U1+ (n-1)d

    Ví dụ:

    Cấp số cộng là 5;9;13;… n. biết dãy số có 7 số hạng.

    Khi đó: số hạng thứ n bằng: 5 + 6.4 = 29.

    5. Một số công thức khác:

    5.1. Công thức liên hệ giữa hai số hạng bất kỳ

    Un=Um + (n-m)d

    5.2. Công thức tính tổng n số hạng đầu (tổng riêng thứ n) thông qua số hạng đầu và số hạng thứ n

    Sn = U1+U2+ …+ Un = (n(U1+Un)/2)

    6. Một số dạng bài tập tính cấp số cộng:

    6.1. Dạng 1: Nhận biết cấp số cộng

    Bước 1: Tìm công sai khi biết hai số hạng liên tiếp nhau theo công thức: d=un–un–1,∀n≥2.

    Bước 2: Kết luận:

    Nếu d là số không đổi thì dãy (un) là CSC.

    Nếu d thay đổi theo n thì dãy (un) không là CSC.

    Ví dụ: Cho dãy số sau: 3;5;7;9;13. Dãy số trên có phải cấp số cộng không?

    Công sai dãy số trên là: 5-3=2; 7-5=2; 13-9=4.

    Do công sai đã có sự thay đổi.

    Do đó, dãy số trên không phải cấp số cộng.

    6.2. Dạng 2: Tìm công sai từ công thức cấp số cộng:

    Ví dụ: Cho một cấp số cộng (Un) có U1=1 và tổng 100 số hạng đầu là 24850. Tính công sai?

    Ta có S100 = 24850

    (n(1+ Un)/2) = 24850

    U100 = 496

    Vậy U100 = 1= 99d

    d= (24850-1)/99

    d=5

    6.3. Dạng 3: Tìm số hạng của cấp số cộng:

    Cho cấp số cộng Un có U1 = 5, d = 4 . Hãy tính U26

    Ta có :

    U26 = U1 + (26 – 1) d

    = 5 + (26 – 1) x 4

    =105

    6.4. Dạng 4: Tính tổng cấp số cộng của n số hạng đầu tiên:

    Ví dụ: Một cấp số cộng (un) biết rằng số hạng đầu tiên u1 = 5, số hạng thứ 11 là u11 = 25. Hãy tính tổng 11 số hạng đầu tiên của dãy số này?

    Áp dụng công thức Sn=(u1+un)n2

    u1= 5

    u11= 25

    n =11

    Dựa vào công thức trên, ta tính tổng 11 số hạng đầu: Sn=(5+25)2.11=165

    6.5. Dạng 5: Tìm cấp số cộng:

    Cách làm:

    Tìm các yếu tố xác định một cấp số cộng như: số hạng đầu u1, công sai d.

    Tìm công thức cho số hạng tổng quát un=u1+(n–1)d

    Ví dụ: Xác định cấp số cộng sao cho tổng n số hạng đầu bằng n=1 lần một nửa số hạng thứ

    7. Một số bài tập ví dụ:

    Câu 1: Chứng minh dãy số (un) với un = 17n + 2 là cấp số cộng

    Hướng dẫn giải chi tiết:

    Ta có: un+1 = 17(n + 1) + 2 = 17n + 19

    => Hiệu: un+1 – un = (17n + 19) − (17n + 2) = 17

    Suy ra: (un) là cấp số cộng với công sai d = 17.

    Câu 2: Cho cấp số cộng (un)

    a) (u­n) có số hạng tổng quát là: un= 7n – 3. Tính S100.

    b) (u­n) có u2+ u22 = 40. Tính S

    c) (u­n) có u4 + u8+ u12 + u16 = 224. Tính S19.

    Hướng dẫn giải chi tiết:

    a) Từ công thức số hạng tổng quát

    Ta có:

    Số hạng đầu: u1 = 7 . 1 – 3 = 4;

    Số hạng thứ hai là : u2 = 7 . 2 – 3 = 11;

    Công sai: d = 11 – 4 = 7

    Khi đó ta có:

    S100=n2u1+(n−1)d2=100[2.4+(100−1).7]2=35050

    b) Ta có: u2+u22=40⇔u1+d+u1+21d=40⇔2u1+22d=40

    Vậy S23=232u1+22d2=23.402=460.

    c) Ta có: u4+ u8 + u12+ u16 = 224

    ⇔u1+3d+u1+7d+u1+15d=224⇔4u1+36d=224⇔u1+9d=56

    Vậy S19=192u1+18d2=19u1+9d=19.56=1064.

    Câu 3: Cho dãy số (un) với un = 2n + 3. Chứng minh rằng dãy số (un) không phải là cấp số cộng.

    Hướng dẫn giải chi tiết:

    Ta có: un+1 = 2n+1 + 3

    Xét hiệu: un+1 − un = (2n+1 + 3) − (2n + 1)= 2n+1 − 2n

    => (un+1 − un) không phải là hằng số; còn phụ thuộc vào n. Nên dãy số (un) không là cấp số cộng.

    Câu 4: Chứng minh rằng:

    a) Nếu ba số a, b, c lập thành một cấp số cộng thì ba số x, y, z cũng lập thành một cấp số cộng, với: x = a2– bc, y = b2– ca, z = c2 – ab.

    b) Nếu phương trình x3– ax2+ bx – c = 0 có ba nghiệm lập thành cấp số cộng thì 9ab = 2a3 + 27c.

    Hướng dẫn giải chi tiết:

    a) a, b, c là cấp số cộng nên a + c = 2b

    Cần chứng minh x, y, z cũng lập thành một cấp số cộng tức là x + z = 2y.

    Ta có 2y = 2b2 – 2ca

    Và x + z = a2 + c2 – b(a + c)

    = (a + c)2 – 2ac – 2b2

    = 4b2 – 2ac – 2b2

    = 2b2 – 2ac = 2y

    Khi đó ta được: y=x+z2y=x+z2

    Vậy ta có điều phải chứng minh.

    b) Giả sử phương trình có ba nghiệm x1, x2, x3lập thành cấp số cộng khi đó: x1+ x3 = 2x2 (1)

    Mặt khác: x3 – ax2 + bx – c = (x – x1)(x – x2)(x – x3)

    = x3 – (x1 + x2 + x3)x2 + (x1 x2 + x2 x3 + x3 x1)x – x1 x2 x3

    Suy ra x1 + x2 + x3 = a (2)

    Từ (1) và (2), ta được 3×2=a⇔x2=a33x2=a⇔x2=a3

    Vì phương trình đã cho có nghiệm x2=a3x2=a3, tức là:

    (a3)3−a(a3)2+b(a3)−c=0⇔−2a327+ba3−c=0⇔9ab=2a3+27ca33−aa32+ba3−c=0⇔−2a327+ba3−c=0⇔9ab=2a3+27c

    Vậy ta có điều phải chứng minh.

    Câu 5: Tính các tổng sau:

    a) S = 1 + 3 + 5 +… + (2n – 1) + (2n + 1)

    b) S = 1 + 4 + 7 +… + (3n – 2) + (3n + 1) + (3n + 4)

    c) S = 1002– 992+ 982 – 972 +… + 22 – 12

    Hướng dẫn giải chi tiết:

    a) Ta có dãy số 1;3;5;…;(2n – 1);(2n + 1) là cấp số cộng với công sai d = 2 và u1 = 1, số hạng tổng quát uk= u1+ (k – 1)d.

    Ta kiểm tra 2n + 1 là số hạng thứ bao nhiêu của dãy: 2n + 1 = u1 + (k – 1)d

    ⇔2n+1=1+(k−1).2⇒k=n+1⇔2n+1=1+(k−1).2⇒k=n+1. Do đó dãy số có n + 1 số hạng.

    Vậy Sn+1= k[2u1+(k−1)d]2Sn+1=k2u1+k−1d2=(n+1)(2u1+nd)2=(n+1)(2n+1)2=n+12u1+nd2=(n+1)(2n+1)2.

    b) Ta có dãy số 1; 4; 7; … (3n – 2);(3n + 1);(3n + 4) là cấp số cộng với công sai d = 3 và u1= 1, số hạng tổng quát uk= u1 + (k – 1)d.

    Ta kiểm tra 2n + 1 là số hạng thứ bao nhiêu của dãy: 3n + 4 = u1 + (k – 1)d

    ⇔3n+4=1+(k−1).3⇒k=n+2⇔3n+4=1+k−1.3⇒k=n+2. Do đó dãy số có n + 2 số hạng.

    Vậy Sn+2=k[2u1+(k−1)d]2Sn+2=k2u1+(k−1)d2=(n+2)[2+(n+1).3]2=(n+2)(3n+5)2=(n+2)2+(n+1).32=(n+2)(3n+5)2.

    c) S = 1002– 992 + 982– 972 +… + 22 – 12

    = (100 – 99)(100 + 99) + (98 – 97)(98 + 97) +… + (2 – 1)(2 + 1)

    = 199 + 195 +… + 3

    = 3 + 7 +… + 195 + 199

    Ta có dãy số 3; 7; …195; 199 là cấp số cộng với công sai d = 4, số hạng đầu tiên u1 = 3 và số hạng thứ n là un = 199.

    Do đó có 199=3+(n−1).4⇒n=50199=3+n−1.4⇒n=50.

    Vậy S=n[2u1+(n−1)d]2S=n2u1+n−1d2=50(2.3+49.4)2=5050=502.3+49.42=5050.

    Câu 6: Bài toán có lời giải: Một xưởng có đăng tuyển công nhân với đãi ngộ về lương như sau: Trong quý đầu tiên thì xưởng trả là 6 triệu đồng/quý và kể từ quý thứ 2 sẽ tăng lên 0,5 triệu cho 1 quý. Hỏi với đãi ngộ trên thì sau 5 năm làm việc tại xưởng, tổng số lương của công nhân đó là bao nhiêu?

    Hướng dẫn giải chi tiết:

    Giả sử công nhân làm cho xưởng n quý thì mước lương khi đó kí hiệu (un) (triệu đồng)

    Theo đề:

    Quý đầu: u1 = 6

    Các quý tiếp theo: un+1 = un + 0,5 với ∀n ≥ 1

    Mức lương của công nhân mỗi quý là 1 số hạng của dãy số un. Mặt khác, lương của quý sau hơn lương quý trước là 0,5 triệu nên dãy số un là một cấp số cộng với công sai d = 0,5.

    Ta biết 1 năm sẽ có 4 quý => 5 năm sẽ có 5.4 = 20 quý. Theo y/c của đề bài ta cần tính tổng của 20 số hạng đầu tiên của cấp số cộng (un).

    Lương tháng quý 20 của công nhân: u20 = 6 + (20 – 1).0,5 = 15,5 triệu đồng

    Tổng số lương của công nhân nhận được sau 5 năm làm việc tại xưởng: 215 (triệu đồng)

    Gọi luật sư ngay
    Tư vấn luật qua Email
    Báo giá trọn gói vụ việc
    Đặt lịch hẹn luật sư
    Đặt câu hỏi tại đây
    5 / 5 ( 2 bình chọn )

    Tags:

    Cấp số cộng


    Tìm kiếm

    Hỗ trợ 24/7: 1900.6568

    Đặt câu hỏi trực tuyến

    Đặt lịch hẹn luật sư

    Văn phòng Hà Nội:

    Địa chỉ trụ sở chính:  Số 89 Tô Vĩnh Diện, phường Khương Trung, quận Thanh Xuân, TP Hà Nội

    Điện thoại: 1900.6568

    Email: dichvu@luatduonggia.vn

    Văn phòng Miền Trung:

    Địa chỉ:  141 Diệp Minh Châu, phường Hoà Xuân, quận Cẩm Lệ, TP Đà Nẵng

    Điện thoại: 1900.6568

    Email: danang@luatduonggia.vn

    Văn phòng Miền Nam:

    Địa chỉ: 248/7 Nguyễn Văn Khối (Đường Cây Trâm cũ), phường 9, quận Gò Vấp, TP Hồ Chí Minh

    Điện thoại: 1900.6568

    Email: luatsu@luatduonggia.vn

    Bản quyền thuộc về Luật Dương Gia | Nghiêm cấm tái bản khi chưa được sự đồng ý bằng văn bản!
    Scroll to top
    • Gọi ngay
    • Chỉ đường
      • HÀ NỘI
      • ĐÀ NẴNG
      • TP.HCM
    • Đặt câu hỏi
    • Trang chủ